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Abstract
A model for the transformation of an Al–Cu–Fe icosahedral quasicrystal into a crystal with a
B2-type phase is proposed. The model is based on two assumptions: (1) the main building
block for the quasicrystal structure is a hierarchical dodecahedron composed of two icosahedral
clusters, coinciding with two different sections of the {3, 3, 5} polytope; (2) the transformation
of the quasicrystal into a B2-type crystal phase can be described as the transition between 3D
sections of two polytopes, namely {3, 3, 5} and {3, 4, 3}. In the framework of the proposed
model, two experimental facts gain plausible explanations: the transformation of the Al–Cu–Fe
quasicrystal into the BCC phase specifically and the orientational relationships observed
between this BCC phase and the initial icosahedral quasicrystal.

1. Introduction

In most cases quasicrystals are transformed into so-called
approximate crystalline phases having very large unit cells
and electron diffraction patterns which are very similar
to the diffraction patterns of quasicrystals. Some time
ago, the experimental observation of the transformation
of an Al62Cu25.5Fe12.5 icosahedral quasicrystal (IQC) into
the crystalline BCC phase (disordered CsCl-type) was
published [1]. The transformation was induced by surface
scratching of a quasicrystal with a WC–Co cermet indenter.
The close orientational relationships between the cubic phase
and the Al–Cu–Fe IQC were determined as follows:

〈110〉, 〈113〉 ‖ A5

and

〈110〉, 〈111〉, 〈112〉 ‖ A2.

4 Author to whom any correspondence should be addressed.

Later, a mechanism was proposed for the quasicrystal–
crystal transformation [2]. This model mechanism was
based on considering the eight-dimensional (8D) root lattice
E8 as the prophase (prototype phase) for any polymorphic
transformation. On a local level, the transformation was
described as a mutual reconstruction of the coordination
polyhedra of transformation participants [2]. In such
terms, the phase participating in the transformation and the
intermediate configurations through which the transformation
was effected could be treated as structural realizations of
specific constructions of algebraic geometry. Experimental
support for the proposed mechanism was found in the
coincidence of the observed Miller indices for habit planes of
iron martensite with Miller indices of the Frank–Kasper 14-
vertex polyhedron. This polyhedron participates in the FCC–
BCC transformation as an intermediate configuration. The
reasons for the transformation of the IQC just into the BCC
phase (disordered B2) are beyond the transformation model
proposed in [2]. On the other hand, a model for the martensitic
transformation of the BCC phase in titanium (and zirconium)
has been proposed in [3], and this model is also based on the
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Figure 1. 3D sections of the {3, 3, 5} polytope started from a polytope vertex (a), face (b) or a polytope cell (c). All sections exist as fragments
of the crystalline lattice of certain intermetallics. The cluster with the D3h symmetry (b) is the intersection of three icosahedra; it forms the
structure of Al5Co2, Al10Mn3, Al9Mn3Si and other compounds. Open circles denote positions of transition metal atoms, the remaining
vertices are occupied by Al atoms. The cluster with the Td-symmetry (c) is the intersection of four icosahedra; it forms the structure of Ti2Ni,
Al13Cr4Si4, Fe3W3C, Cu5Zn8 (γ -brass), Th6Mn23 and others. In the case of Al13Cr4Si4 open circles denote positions of Cr atoms and dark
circles the positions of Si atoms, and the remaining vertices are occupied by Al atoms. Vertices denoted by letters A form an octahedron.

eight-dimensional root lattice E8 as the prototype phase. In the
present work, we propose a model to explain why the IQC in
the Al–Cu–Fe system transforms just into the crystalline phase
with the BCC structure.

2. Model

Obviously, both the IQC → BCC crystal transformation and
the orientational relationships between an initial IQC and
its crystalline transformation products are determined by:
(1) the local quasicrystal structure and (2) the transformation
mechanism. A widely accepted description of the quasicrystal
phenomenon is the strip-projection method (SPM) on the
basis of six-dimensional (6D) primitive (P), FCC and BCC
lattices [4]. For example, the unit cell of a 6D primitive
cubic lattice with its 26 = 64 vertices is mapped onto a
triacontahedron with 32 vertices in 3D Penrose tiling. All
these lattices are so-called root lattices B6 (P lattice), D6 (FCC
lattice) and D∗

6 (BCC lattice) [5]. Here the asterisk denotes a
dual lattice. A generalized SPM permits us to obtain a more
complex tiling than 3D Penrose models for the quasicrystal
structure. For example, icosahedral Danzer tiling can be
derived from the D6 lattice [6]. In that tiling different windows
determine different classes for the meeting of polyhedra at
the common vertex. Atomic decorations of the quasicrystal
structure models in the frameworks of the SPM are mainly
confined to the known Mackay cluster or Bergman cluster [7].

However, there is a more general and complete description
of the quasicrystal structure. All 6D lattices are sublattices of
the 8D root lattice E8 so they can be inserted into it (see [8]).
Due to this the symmetry of the root lattice E8 includes all
symmetries described by Yamamoto [4]. A detailed description
of the connection of the quasicrystal structure with the E8

lattice was presented by Sloane and Elser [9], Sadoc and
Mosseri [10, 11] and Moody and Patera [12]. We will show
here that an adequate model for the IQC with real atomic
decorations can be constructed in the framework of the E8

lattice concept only.
Earlier, a geometric model was proposed for the 3D space

structure of icosahedral [13] and decagonal [14] quasicrystals.

Figure 2. Photo of the cartoon model of a hierarchical dodecahedron
formed by sticking together clusters from figure 1 in the
D3h–Td–D3h–Td − · · · sequence. The photo is taken along the
two-fold axis of the dodecahedron.

In both cases the quasicrystal structures were constructed from
two starting clusters with D3h and Td symmetries (figure 1),
these clusters were taken from experimental data as fragments
of crystal structures of certain intermetallics (see caption
to figure 1). By sticking these two clusters through their
common corrugated hexacycles in the D3h–Td–D3h–Td − · · ·
sequence one can generate a hierarchical dodecahedron with
an edge length of 0.7–0.75 nm (figure 2) which is considered
in [13] as the main building block for the quasicrystal
structure. That model gave a satisfactory explanation for the
origin of the non-crystallographic icosahedral symmetry of the
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Figure 3. Rolling of the {5, 3, 3} polytope along four rhombus edges
generates a −2π/5 disclination threading the center of the rhombus
face (see the six-membered ring in the center) [18].

point diffraction patterns, positions of diffraction maxima and
chemical composition of quasicrystalline phases. However,
analysis for the possible correspondence of the proposed model
with SPM or with the E8 concept used in [9–12] was not
conducted in [13, 14].

D3h and Td clusters and the composite dodecahedron could
be considered as the spherical shells which are determined
by 3D projections of the {3, 3, 5} polytope. A single
icosahedron (figure 1(a)) is the part of the projection started
from the polytope vertex. A cluster with D3h symmetry
is the projection started from a polytope face (figure 1(b))
while the third cluster with the Td symmetry is the projection
started from a tetrahedral cell (figure 1(c)). Distortions of
tetrahedron edges are needed for this straightening of polytope
substructures. Necessary distortions have been effected by
positioning different atomic species in different vertices.
Bearing in mind the description by Sadoc and Mosseri in [10]
of the 8D lattice E8 as a set of concentric icosahedral shells,
the dodecahedron shown in figure 2 can be regarded as joining
of icosahedral shells determined by the root lattice E8.

It can be noted that Mackay and Bergman clusters are also
3D projections from the {3, 3, 5} polytope started from a vertex.
In our model we use polytope projections started from a face
and a cell for the first time.

The possibility for sticking these D3h and Td clusters is
determined by their derivation as polytope sections. Since
both clusters consist of joined {3, 3, 5} polytope sections,
in the interior of this polytope they could be joined without
intersection along the common three-fold axis (that is the 61

axis in the polytope). In other words, a linear substructure is
delineated in the {3, 3, 5} polytope, and this substructure can
be represented as the sequence of three clusters Td–D3h–Td.
As has been said above, the {3, 3, 5} polytope is determined
by the E8 lattice, and the E8 lattice also determines a dual {5,
3, 3} polytope, and the {720} polytope as they join [9]. In the
latter the edge of the dodecahedral cell of the {5, 3, 3} polytope
is perpendicular to a triangular face of the {3, 3, 5} polytope
and runs through the face center. Each one of the 600 cells of
the {3, 3, 5} polytope is centered by a vertex belonging to the

Figure 4. A rhombohedron decorated by dodecahedra with two
hexakaidecahedra inside. The rhombohedron serves as one branch of
a 20-branched dodecahedral star. Centers of hexakaidecahedra are
intersecting points of four disclination segments.

dual {5, 3, 3} polytope; respective joining of the {3, 3, 5} and
{5, 3, 3} polytopes gives 720 vertices which can be regarded as
the 4D counterpart of the triacontahedron [9]. In such a way
the axis of the selected linear substructure (i.e. the Td–D3h–Td

sequence) coincides with the edge of the dodecahedron from
{5, 3, 3}, which is also a part of the {720} polytope. All vertices
of the selected linear substructure of {3, 3, 5} correspond to D3h

symmetry, so we can state that this substructure can be inserted
into the decorated {5, 3, 3} polytope ({5, 3, 3}dec). As a result,
the dodecahedral cluster shown in figure 2 can also be inserted
into the decorated {5, 3, 3}dec polytope corresponding to the
set of icosahedral shells in the root lattice [10], and it must
be regarded as the decorated cell of {5, 3, 3}dec. Both edge
length and diameter of the decorated polytope are determined
by experiment, since we are joining together only clusters
which have been observed experimentally.

The next step of the quasicrystal model construction is
filling of the 3D space by hierarchical dodecahedra. Since
the tessellation of the 3D Euclidean space onto regular
dodecahedra is impossible, one must use the scheme of
polytope straightening including rolling the polytope over the
3D hyperplane and introducing defects (disclinations) [15–17].
Ishii [18] has considered the rolling of the {5, 3, 3} polytope
along its 101 symmetry axis. While rolling along a single
direction the rod-like substructure is generated, containing
dodecahedra joined in the face-to-face mode. While rolling the
dodecahedral cell along four rhombus edges the defect arises
in the center of the rhombus face.

That defect is the −2π/5 disclination threading a six-
membered ring in the face center (see figure 3). Six
rhombus faces formed by rolling dodecahedral cells are joined
into a prolate rhombohedron (figure 4), and disclinations
threading face centers intersect at two points belonging
to the space diagonal of the rhombohedron. Disclination
segments are intersecting under tetrahedral angles. As a
result, a hole inside the rhombohedron has the shape of
two hexakaidecahedra connected by the inversion center in a
common hexagonal face. Since dodecahedra can be joined
into both prolate and oblate rhombohedra (see [19]), in
the next step one can obtain the 3D Penrose tessellation

3
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Figure 5. Joining of the hierarchical dodecahedra shown in figure 2
by the face-to-face mode starts the assemblage of the dodecahedral
star (20-branched stellated polyhedron).

Figure 6. The next step in the assemblage of the 20-branched
stellated polyhedron (dodecahedral star). The centers of
hexakaidecahedra (with black hexagonal faces) form a dodecahedron
(an inner shell of the disclination network). Centers of
hexakaidecahedra and dodecahedra taken together form a rhombic
triacontahedron (right).

with rhombohedra decorated by the hierarchical dodecahedra
shown in figure 2. This step corresponds to Mackay’s
proposal for decoration of the 3D Penrose tessellation by
dodecahedral cells [20]. Our approach is distinguished by
the use of a hierarchical dodecahedron instead of an ordinary
polyhedron. While sticking dodecahedra into a rhombohedron
unavoidable gaps arise between them [19]. In the case of the
hierarchical dodecahedron gaps can be eliminated easily by
edge deformation, since the edge is not a single interatomic
bond but is formed by several tens of bonds.

In accordance with accepted quasicrystal models based
on the SPM and 6D lattice the icosahedral symmetry of
their point diffraction patterns is ensured by the presence
of the 20-branched star-polyhedron (the dodecahedral star)
in the 3D Penrose tessellation. This dodecahedral star is
formed by joining of 20 prolate rhombohedra in one common
vertex [7]. The sequential steps of constructing such a
polyhedron from hierarchical dodecahedra are depicted in
figures 4–8. Details of the atomic structure of hierarchical

Figure 7. Two shells of the disclination network. The outer shell is a
rhombicosidodecahedron and the inner shell is the dodecahedron.
Shells are connected by radial segments along three-fold axes.

Figure 8. The limiting cluster with icosahedral symmetry is a
hierarchical dodecahedral star. The outer cluster shell overlaps with
neighboring clusters having the same structure. This hypercluster
with a diameter of about 16 nm serves as the cooperative atom in the
quasicrystal structure.

polyhedra are not shown on these pictures; for clarity they
are represented as ordinary polyhedra with straight edges. The
disclination network is generated while joining 20 hierarchical
rhombohedra (see figure 7). That disclination network
consists of two concentric shells: the knots of the inner
shell (centers of the hexakaidecahedra) form a dodecahedron
(see figure 6), while the knots of the outer shell form a
rhombicosidodecahedron. Shells are connected with each
other by the radial disclination segments oriented along three-
fold symmetry axes of the dodecahedral star. The result of
the star assembly is shown in figure 8. The hierarchical
cluster with icosahedral symmetry represents the joining of the
polytope sections determined by the root lattice E8 [9, 10]. As
can be seen, the centers of the hexakaidecahedra (i.e. knots
of the disclination network) form the rhombicosidodecahedron

4
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(an outer shell of the disclination network in figure 7). It is the
maximal possible cluster since after adding the next polyhedral
shell (dodecahedra and hexakaidecahedra) 12 similar clusters
form around five-fold axes.

Pentagonal faces of the rhombicosidodecahedron are
shared between two neighboring hierarchical clusters, so these
new clusters are interpenetrating with the central cluster along
five-fold axes and oriented parallel to each other. The limiting
cluster contains 195 dodecahedra and 100 hexakaidecahedra
(40 in the interior of 20 rhombohedra and 60 in the vertices of
the rhombicosidodecahedron).

The final hierarchical cluster has a diameter of about
16 nm. It can serve as ‘a cooperative atom’ for both aperiodic
and periodic models, i.e. for the IQC and its crystalline
approximant. Since it contains approximately 1.5 × 105

ordinary (‘chemical’) atoms and has an icosahedral symmetry,
in the ordinary diffraction experiment one cannot distinguish
between aperiodic and periodic stacking of such giant ‘quasi-
atoms’ oriented parallel to each other. Diffraction of electrons
by parallel giant icosahedral clusters will give a point pattern
corresponding to the cluster symmetry while the lattice period
of the crystal formed by giant atoms is equal to about
32 nm [13]. Due to this, the assembled giant hierarchical
cluster is simply pointing to the other possibility for explaining
point diffraction patterns with icosahedral symmetry. Taking
this explanation as valid there is no need to use concepts from
the 3D Penrose tessellation and its crystalline approximant.

Taking this model of the icosahedral quasicrystal as the
projection of the decorated {5, 3, 3}dec polytope, both the
transformation of the IQC into the disordered B2-phase and
the orientation relationship between them observed in [1] can
be easily explained.

Edges of the hierarchical dodecahedron (figure 2) are
decorated by clusters with the D3h symmetry representing
joining of three icosahedra and coinciding, as was said above,
with the 3D projection of the {3, 3, 5} polytope starting from
a face (vertices of this face are shown on figure 1(b) by open
circles). The common part of three icosahedra (delineated as a
dotted line in figure 1(b)) contains 11 vertices belonging to 11
tetrahedra. As was shown in [3], this 11-vertex cluster serves as
intermediate configuration during the martensitic BCC–HCP
transformation.

The essence of the model proposed in [3] for the BCC–
HCP transformation is depicted in figure 9. Here two 11-vertex
clusters are shown where the first cluster is the joining of three
distorted octahedra about a common edge C–C (figure 9(a)).
That octahedral cluster is the fragment of the hexagonal
crystalline lattice of the ω-phase which is the intermediate
product of the martensitic transformation in titanium- and
zirconium-based alloys [21]. The common edge of three
octahedra is parallel to the [0001] direction of the ω structure.
Joining three octahedra around a common edge determines the
{3, 4, 3} polytope having 24 vertices and 24 octahedral cells
in 4D space [22], so the 11-atom fragment of the ω structure
shown in figure 9(a) coincides with the section of {3, 4, 3} by a
3D hyperplane drawn from an edge.

Skipping the common C–C edge in the 11-atom octahedral
cluster of the ω phase and inserting three new bonds between

Figure 9. Reconstruction of the 11-atom octahedral cluster (top) into
the 11-atom tetrahedral cluster (bottom) by elongating the C–C edge
and compressing the cluster in the A–A–A plane (see arrows). The
11th atom A in the tetrahedral cluster is invisible. Miller indices of
different faces are shown in the hexagonal and cubic settings. All
outer edges of the cluster are equal to each other, whereas inner
edges A–A are elongated by 18%.

the A vertices lying in the horizontal mirror plane of the
cluster generates a new 11-atom cluster representing in
itself the joining of 11 tetrahedra in the face-to-face mode,
i.e. the section of the {3, 3, 5} polytope started from a face
(figure 9(b)). In the {3, 3, 5} polytope each vertex serves as the
center of an icosahedron, therefore each atom in the 11-atom
tetrahedral cluster can be surrounded by 12 atoms occupying
icosahedral vertices. This 11-atom tetrahedral cluster is the
product of a mutual intersection of three icosahedra, whereas
each vertex of the central triangle in the (0001)ω plane serves
as an icosahedron center. Thus, as a result of a deformation of
the 11-atom octahedral cluster of the ω phase we obtain the 11-
atom tetrahedral cluster and vice versa. We can say that BCC–
HCP transformation is the transition from the straightened
fragment of the {3, 4, 3} polytope to the straightened fragment
of the {3, 3, 5} polytope. The said transition from one polytope
into the other was achieved by deformation only; the number
of vertices is unchanged. Of course, there is a fundamental
connection between both polytopes: according to the Gosset
scheme [23], an action of the five-fold symmetry axis on 24
vertices of the {3, 4, 3} polytope generates 120 vertices of the
{3, 3, 5} polytope.

We can obtain hexagonal packing directly from the
BCC packing, since it is known that an icosahedron
can be reconstructed into an anti-cuboctahedron with HCP
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structure [2]. Similarly, as the reverse transformation, we
can obtain the 11-atom octahedral cluster from the 11-atom
tetrahedral cluster in figure 9(b). In other words, we can
obtain the BCC packing from the D3h cluster since the 11-atom
tetrahedral cluster is a part of it.

Briefly, the transformation of IQC into the disordered B2
phase observed in [1] can serve as evidence for the existence
in the IQC structure of the hierarchical dodecahedron shown
in figure 2. In case this is the true three-fold symmetry
axis of the D3h cluster, i.e. a direction along the edge of the
hierarchical dodecahedron, or, in turn, the direction of the
two-fold axis of the dodecahedron (A2 axis), must be parallel
to the three-fold axis of the BCC phase, so the A2 axis of
the IQC must be parallel to 〈111〉 of the B2 phase, as was
actually observed in [1]. Figure 10 shows a stereograph of
the icosahedron oriented with its A2 axis along the three-fold
axis of the cubic phase. It is easily seen that all orientational
relationships between the IQC and the B2 phase observed in [1]
are strictly fulfilled, so that all of them are consequences of
two propositions: (1) the hierarchical dodecahedron composed
of two projections of the {3, 3, 5} polytope serves as the
building unit of the IQC; (2) the mechanism of the IQC → B2
crystal transformation coincides with the mechanism proposed
recently for the BCC–HCP martensitic transformation in Ti
and Zr [3]. Some support for this transformation mechanism
can be found in the work by Shalaeva et al [24]. The authors
of [24] investigated the structural state of the BCC solid
solution in a quenched quasicrystal-forming Al61Cu26Fe13

alloy by TEM. They concluded that the initial CsCl-type
solid solution had a heterogeneous structure, i.e. this state is
similar to the diffuse incommensurable ω phase in BCC solid
solutions. Also, an assumption has been made in [24] that
the regions with ω-like clusters are involved in the structural
transformation of the BCC phase to IQC. Besides, in the
polythermic sections of the Al–Cu–Fe ternary diagram the
stable icosahedral Al–Cu–Fe quasicrystal (i-phase) is next to
the two-phase field i + ω [25, 26].

3. Discussion

Two features distinguish the proposed model of the IQC:
(1) fragments of realized crystalline structures coinciding with
two different 3D sections of the 4D polytope have been used
for constructing a model structure; (2) a hierarchical sticking
of atomic clusters.

The suggestion that a quasicrystal structure is a
hierarchical tiling with three different scales of tiles was put
forward by Lidin [27]. Later, a more detailed quasicrystal
model was elaborated, based on a self-similar hierarchical
packing of Mackay clusters [28]. Experimental support for
the hierarchical cluster packing as the quasicrystal structure
was obtained by scanning tunneling microscopy [29]. Later,
Mackay [30] put forward two concepts: (1) clusters of
clusters are an alternative to strict crystalline arrangements,
and could form a new type of condensed matter; (2) true
quasicrystals can probably also be described as icosahedral
clusters, themselves clustered icosahedrally in hierarchical
levels, the gaps being filled by overlapping of these clusters.

Figure 10. A stereograph of an icosahedron with two-fold A2 axis
parallel to the three-fold 〈111〉 axis of the cubic structure. Different
symmetry axes of the icosahedron are designated by respective
symbols, three numbers near each icosahedron pole denote Miller
indices of the cubic phase. The fulfillment of all orientation
relationships observed in [1] between IQC and B2-phase can be
easily seen.

Hierarchical structure was also assigned to the stable binary
quasicrystal Cd5.7Yb [31]. However, in the last case some
doubt could arise concerning the cluster decoration: the first
shell contains four Cd atoms placed at the vertices of the
tetrahedron while the second consists of 20 Cd atoms forming a
dodecahedron. In this case there is an uncertainty: a large free
space inside the dodecahedron and five possible orientations of
the tetrahedron with respect to the dodecahedron.

The essence of our method for the construction of the
quasicrystal model is the ‘upward motion’ which is contrary
to the ‘downward motion’ of the SPM. Insertion of the {3,
3, 5} and {5, 3, 3} polytopes into the E8 root lattices en-
sures the possibility of ’lifting’ 3D atomic coordinates of
our model into the 6D lattice. A similar construction has
been elaborated by Le Lann [32], where the hierarchical
model of the IQC Al–Cu–Fe was inserted into the D6 lattice,
that model was formed by concentric shells (dodecahedron–
icosidodecahedron–rhombicosidodecahedron, icosidodecahe-
dron formed by rhombicosidodecahedra etc).

Taking the E8 lattice, we use the most general approach
giving the most complete symmetry description of possible
structures which show experimental point diffraction patterns
with icosahedral symmetry. One cannot obtain the 4D {3, 3, 5}

6
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polytope from the 6D D6 lattice, but the {3, 3, 5} polytope, dual
to it the {5, 3, 3} polytope, their joining {720} polytope, and the
D6 lattice can be obtained from the E8 lattice.

The existence of the Mackay cluster in the real crystal
structure of the cubic α-AlMnSi phase [33] serves as
experimental support for the quasicrystal models decorated
by these clusters. However, there is also the β-AlMnSi
phase having hexagonal structure and the same chemical
composition as the α-AlMnSi phase [34]. This β-AlMnSi
is isomorphic with the Al5Co2 phase, i.e. its structure is
composed from the same icosahedral triplets, as was shown
above in figure 1(b). Le Lann [35] did show the equivalence
between the descriptions of icosahedral quasicrystals in the
framework of the SPM by ‘α-AlMnSi-like’ and ‘β-AlMnSi-
like’ decorations of the 6D cubic lattice. Moreover, the
icosahedral Al73Mn21Si6 alloy transforms entirely into the β-
AlMnSi phase by heating at 700 ◦C [36].

Also, a metric correspondence can be found between our
model and the 6D description of the quasicrystal structure. The
length of the icosahedron diagonal in the Td and D3h clusters
(figure 1) is equal to τdAl = 0.46 nm, since the icosahedron
edge length is equal to the atomic diameter of aluminum, dAl =
0.286 nm, and the golden number τ = 1.618. But the value of
0.46 nm is exactly the so-called quasilattice period aR in the
6D formalism [37]. Also, the period of the periodical packing
of the hierarchical giant clusters aqc = 50τ 3(τ + 2)−1/2dAl =
50d5 [13], where d5 is the diameter of a sphere inscribed into
a dodecahedron with aluminum atoms in its vertices. The d5

value of 0.637 nm is very close to the edge length of the 6D-
cube determined from the diffraction data [37].

Chemical composition of the hierarchical dodecahedron
in figure 2 is in close coincidence with the experimentally
observed chemical composition of the IQC. As was shown
in [14], if the central triangle of the D3h cluster (open circles
in figure 1(b)) and the centers of its hexacycles, the central
tetrahedron and the centers of the hexacycles of the Td cluster
in figure 1(c) are occupied by manganese atoms, and all
the other vertices with aluminum atoms, then the chemical
composition of the IQC is described by the formula Al17Mn5

(Al77.3Mn22.7). If the central triangle of the D3h cluster and the
central tetrahedron of the Td cluster are occupied by Cu atoms
and the type-A vertices (forming a large octahedron) by Fe
atoms whereas all the other vertices are occupied by aluminum
atoms, then the composition of the IQC will be Al14Cu5Fe3,
i.e. Al63.6Cu22.7Fe13.6. Both predicted compositions are close
to the experimentally observed IQC compositions in Al–Mn
and Al–Cu–Fe alloy systems, respectively.

Bearing in mind the idea put forward by Mackay [30]
we have used a similar model of the hierarchical cluster to
explaining the phenomenon of so-called aperiodic phases with
the cubic symmetry [38]. Such objects observed in the melt
quenched Mg–Al alloys have been designated as ‘quasicrystals
without forbidden symmetry axis’ [39]. In the framework of
our approach the appearance of aperiodic diffraction patterns
can be explained in a unique way independently of their non-
crystallographic or crystallographic symmetry. Both the IQC
and cubic aperiodic phases are objects with the hierarchical
principle of structural organization of condensed matter.

As a final remark, we want to point out that the
outer morphology of the growing IQC is in some cases
a dodecahedral one and in some cases a triacontahedral
morphology or dodecahedral star [40], but in no cases
were icosahedral quasicrystals growing with icosahedral
morphology.

4. Conclusion

(1) An atomic model of the icosahedral phase can be
constructed as the hierarchical joining of 3D sections of
the 4D polytopes determined by the 8D root lattice E8.

(2) The hierarchical construction has been obtained by
decoration of the {720} polytope, determined by the E8

lattice and representing the joining of the {3, 3, 5} and
{5, 3, 3} polytopes. The cell of the {5, 3, 3} polytope
was decorated by vertices of two different 3D sections
of the {3, 3, 5} polytope. Both sections used for the
decoration have been experimentally observed as clusters
belonging to the crystal structures of certain intermetallic
compounds, so the edge length and diameter of the
decorated polytope is determined by experiment.

(3) The decorated {5, 3, 3} polytope can be mapped
onto three-dimensional Euclidean space by the known
route of rolling its hierarchical dodecahedral cell along
edges of the rhombohedron. The obtained hierarchical
rhombohedron can have aperiodic Penrose tiling or
periodic crystallographic tiling. Since the lattice period
of the crystallographic tiling is about 32 nm, a distinction
between aperiodic and periodic (approximant) tiling is not
possible in the standard diffraction experiment.

(4) In the framework of this model it is possible to explain
accurately two experimental facts: the transformation of
the Al–Cu–Fe quasicrystal into the BCC phase specifically
and the orientational relationships between this BCC
phase and an initial icosahedral quasicrystal.

(5) The transformation of an icosahedral quasicrystal into the
cubic B2 phase can be considered as the transition from
a 3D section of the {3, 3, 5} polytope into the 3D section
of the {3, 4, 3} polytope. This description is quite similar
to the recently suggested description for the BCC–HCP
transformation.

Acknowledgments

This work was supported by a grant of the Chemical
Department of RAS, program no. 7, grants of the Presidium
RAS ‘Innovation sponsoring-2007’, ‘Innovation sponsoring-
2008’, Russian Foundation for Basic Research (RFBR) grant
no. 08-02-01177-a.

References

[1] Wu J S, Brien V, Brunet P, Dong C and Dubois J-M 2000
Electron microscopy study of scratch-induced surface
microstructures in an Al–Cu–Fe icosahedral quasicrystal
Phil. Mag. A 80 1645–55

7

http://dx.doi.org/10.1080/01418610008212141


J. Phys.: Condens. Matter 20 (2008) 235215 V S Kraposhin et al

[2] Kraposhin V S, Talis A L and Dubois J-M 2002 Structural
realization of the polytope approach for the geometrical
description of the transition of a quasicrystal into a
crystalline phase J. Phys.: Condens. Matter 14 8987–96

[3] Kraposhin V S, Talis A L and Wang Y J 2006 Description of
polymorphic transformations of Ti and Zr in the framework
of the algebraic geometry Mater. Sci. Eng. A 438–440 85–9

[4] Yamamoto A 1996 Crystallography of quasiperiodic crystals
Acta Crystallogr. A 52 509–60

[5] Conway J H and Sloane N J A 1988 Sphere-Packings, Lattices
and Groups (Berlin: Springer)

[6] Danzer L, Papadopolos Z and Talis A 1993 Full equivalence
between Socolar’s tiling and the (A, B, C, K)-tillings leading
to a rather natural decoration, Int. J. Mod. Phys. B
7 1379–86

[7] Janot C 1994 Quasicrystals 2nd edn (New York: Cambridge
University Press)

[8] Humphreys J E 1975 Linear Algebraic Groups (New York:
Springer) section 35

[9] Elser V and Sloane N J A 1987 A highly symmetric four
dimensional quasicrystal J. Phys. A: Math. Gen. 20 6161–8

[10] Sadoc J F and Mosseri R 1993 The E8 lattice and quasicrystals:
geometry, number theory and quasicrystals J. Phys. A: Math.
Gen. 26 1789–809

[11] Sadoc J F and Mosseri R 1993 The E8 lattice and quasicrystals
J. Non-Cryst. Solids 153/154 247–52

[12] Moody R V and Patera J 1993 Quasicrystals and icosians
J. Phys. A: Math. Gen. 26 2829–53

[13] Kraposhin V S 1996 Assembly of an icosahedral quasicrystal
from hierarchic atomic clusters Crystallogr. Rep. 41 371–80

[14] Kraposhin V S 1999 Assembly of an icosahedral quasicrystal
from hierarchic atomic clusters: decagonal symmetry
Crystallogr. Rep. 44 927–37

[15] Nelson D R 1983 Order, frustration, and defects in liquids and
glasses Phys. Rev. B 28 5515–35

[16] Mosseri R and Sadoc J F 1984 Hierarchical structure of defects
in non-crystalline sphere packings J. Phys. Lett. 45 L827–32

[17] Mosseri R and Sadoc J F 1986 Polytopes and projection
method: an approach to complex structures J. Phys. Coll.
47 (Suppl.) C3 281–97

[18] Ishii I 1988 Propagating local positional order in tetrahedrally
bonded systems Acta Crystallogr. A 44 987–98

[19] Lord E A, Mackay A L and Ranganathan S 2006 New
Geometries for New Materials (New York: Cambridge
University Press)

[20] Mackay A L 1985 Icosahedra in aluminium/manganese alloy
Nature 315 636

[21] McQuillan M K 1963 Phase transformations in titanium and its
alloys Metall. Rev. 8 N29

[22] Coxeter H S M 1983 Regular Polytopes (New York: Dover)
[23] Mosseri R, DiVincenzo D P, Sadoc J F and Brodsky M H 1985

Polytope model and the electronic and structural properties
of amorphous semiconductors Phys. Rev. B 32 3974–4000

[24] Shalaeva E V and Prekul A F 2000 Structure state of β-solid
solution in quenched quasicrystal-forming alloys of
Al61Cu26Fe13 Phys. Status Solidi a 180 411–25

[25] Faydot F, Quivy A, Calvayrac Y, Gratias D and
Harmelin M 1991 Mater. Sci. Eng. A 133 383–7

[26] Yokoyama Y, Fukaura K, Sunada H, Note R, Hiraga K and
Inoue A 2000 Mater. Sci. Eng. A 294–296 68–73

[27] Lidin S 1991 Quasicrystals: local structure versus global
structure Mater. Sci. Eng. A 134 893–5

[28] Janot C M and de Boissieu M 1994 Quasicrystals as a hierarchy
of clusters Phys. Rev. Lett. 72 1674–7

[29] Ebert P, Feuerbacher M, Tamura N, Wollgarten M and
Urban K 1996 Evidence for a cluster-based structure of
AlPdMn single quasicrystals Phys. Rev. Lett. 77 3827–30

[30] Mackay A 1998 Some are less equal than others Nature
391 334–5

[31] Tsai A P, Guo J Q, Abe E, Takakura H and Sato T J 2000
A stable binary quasicrystal Nature 408 537–8

[32] Le Lann A 1992 Three-dimensional F quasilatice model of
decoration for Al–Cu–Fe icosahedral alloys Phil. Mag. B
66 653–65

[33] Cooper M and Robinson K 1966 The crystal structure of the
ternary alloy α(AlMnSi) Acta Crystallogr. 20 614–7

[34] Robinson K 1952 The structure of β(AlMnSi)–Mn3SiAl9

Acta Crystallogr. 5 397–403
[35] Le Lann A 1990 Structure of the icosahedral Al–Mn-Si alloys:

decoration in three-dimensional space of a six-dimensional
cubic I lattice Phil. Mag. B 62 577–87

[36] Calvayrac Y, Devaud-Rzepski J, Bessière M, Lefebvre S,
Quivy A and Gratias D 1989 The nature of the topological
disorder in the rapidly quenched Al73Mn21Si6 icosahedral
phase Phil. Mag. B 59 439–50

[37] Ranganathan S and Chattopadhyay K 1991 Quasicrystals
Annu. Rev. Mater. Sci. 21 437–62

[38] Kraposhin V S, Talis A L and Ha Thanh L 2008 The structure
model of a cubic aperiodicphase (‘quasicrystal without
forbidden symmetry axes’) J. Phys.: Condens. Matter
20 114115

[39] Donnadieu P, Harmelin M, Su H-L, Seifert H-J,
Effenberg G and Aldinger F A 1997 Quasicrystal with
inflation symmetry and no forbidden symmetry axes in a
rapidly solidified Mg–Al alloy Z. Metallk. 88 33–7

[40] Abe E, Yan Y and Pennycook S J 2004 Quasicrystals as cluster
aggregates Nat. Mater. 3 759–67

8

http://dx.doi.org/10.1088/0953-8984/14/39/308
http://dx.doi.org/10.1016/j.msea.2006.02.145
http://dx.doi.org/10.1107/S0108767396000967
http://dx.doi.org/10.1142/S0217979293002389
http://dx.doi.org/10.1088/0305-4470/20/18/016
http://dx.doi.org/10.1088/0305-4470/26/8/009
http://dx.doi.org/10.1016/0022-3093(93)90351-W
http://dx.doi.org/10.1088/0305-4470/26/12/022
http://dx.doi.org/10.1103/PhysRevB.28.5515
http://dx.doi.org/10.1051/jphyslet:019840045017082700
http://dx.doi.org/10.1107/S0108767388004155
http://dx.doi.org/10.1038/315636a0
http://dx.doi.org/10.1103/PhysRevB.32.3974
http://dx.doi.org/10.1002/1521-396X(200008)180:2<411::AID-PSSA411>3.0.CO;2-C
http://dx.doi.org/10.1016/0921-5093(91)90093-3
http://dx.doi.org/10.1016/S0921-5093(00)01201-6
http://dx.doi.org/10.1016/0921-5093(91)90885-Q
http://dx.doi.org/10.1103/PhysRevLett.72.1674
http://dx.doi.org/10.1103/PhysRevLett.77.3827
http://dx.doi.org/10.1038/34787
http://dx.doi.org/10.1038/35046202
http://dx.doi.org/10.1107/S0365110X6600149X
http://dx.doi.org/10.1107/S0365110X52001246
http://dx.doi.org/10.1080/13642819008215256
http://dx.doi.org/10.1080/13642818908218392
http://dx.doi.org/10.1088/0953-8984/20/11/114115
http://dx.doi.org/10.1038/nmat1244

	1. Introduction
	2. Model
	3. Discussion
	4. Conclusion
	Acknowledgments
	References

